A series LCR circuit driven by 300 V at a frequency of 50 Hz contains a resistance R = 3 k Ω , an inductor of inductive reactance X_L = 250 $\pi\Omega$ and an unknown capacitor. The value of capacitance to maximize the average power should be : (Take π^2 = 10) (JEE MAIN 2021)

- \bigcirc 4 μ F
- B 25 μF
- 400 μF
- D 40 μF

1. In given LCR circuit;

$$V_m = 300V$$
, $V = 50 HZ$, $R = 3 RR$, $X_1 = 250\pi \Omega$
... $W = 2\pi V \Rightarrow 100\pi \text{ rand/S}$
Let 'C' be the capacitance of nequirod capacitor.
... $X_c = 1 = 1$ Ω ; $X_L = 250\pi \Omega$
 WC $(100\pi)C$
... $Z = \sqrt{R^2 + (X_c - X_L)^2}$
 $= \sqrt{3 \times 10^3} + \sqrt{1} - (250\pi)^2$
... $\sqrt{100\pi C}$
... $\sqrt{100\pi C}$

Trick: - No need to Evaluate whole expression.)

Just take derivative wirt C and evaluate it

As Par & 1

Par = E2 R

=> For Par to be max, 22 must be minimum $= \frac{1}{2} = (3 \times 10^{3})^{2} + (1 - 250\pi)^{2}$ is minimum which is possible only when xc-x1 = 0 i-e 1 - 2507 =0 100nc (100 n) (250n) =) (= 1 (Taking n2=10) 21X103X10 = C= YMF